scholarly journals A Regional Model Simulation of the 1991 Severe Precipitation Event over the Yangtze–Huai River Valley. Part II: Model Bias

2000 ◽  
Vol 13 (1) ◽  
pp. 93-108 ◽  
Author(s):  
Wei Gong ◽  
Wei-Chyung Wang
2003 ◽  
Vol 21 (11) ◽  
pp. 2219-2232 ◽  
Author(s):  
B. Tomassetti ◽  
F. Giorgi ◽  
M. Verdecchia ◽  
G. Visconti

Abstract. The drainage of the Fucino Lake of central Italy was completed in 1873, and this possibly caused significant climatic changes over the Fucino basin. In this paper we discuss a set of short-term triple-nested regional model simulations of the meteorological effects of the Fucino Lake on the surrounding region. We find that the model simulates realistic lake-breeze circulations and their response to background winds. The simulations indicate that the lake affects the temperature of the surrounding basin in all seasons and precipitation in the cold season, when cyclonic perturbations move across the region. Some effects of the lake also extend over areas quite far from the Fucino basin. Our results support the hypothesis that the drainage of the lake might have significantly affected the climate of the lake basin. However, longer simulations and further development in some aspects of the model are needed, in order to provide a more statistically robust evaluation of the simulated lake-effects.Key words. Hydrology (anthropogenic effects) – Meteorology and atmospheric dynamics (climatology; mesoscale meteorology)


2009 ◽  
Vol 137 (4) ◽  
pp. 1409-1421 ◽  
Author(s):  
K. Yoshimura ◽  
M. Kanamitsu

Abstract The effect of vertical and time interpolations of external forcings on the accuracy of regional simulations is examined. Two different treatments of the forcings, one with conventional lateral boundary nudging and the other with spectral nudging, are studied. The main result is that the accuracy of the regional simulation increases very slowly as the number of forcing field levels increase when no spectral nudging is used. Thus, for better simulation, it is desirable to have as many forcing levels as possible. By contrast, spectral nudging improves the regional model simulation when reasonably large numbers of forcing field levels, at least up to nine levels, are given. The accuracy worsens drastically when the number of forcing levels is reduced to less than nine. To improve the simulation, in particular when the forcing field is given at a coarse vertical resolution and at lower time frequency, an incremental interpolation method is introduced. The incremental interpolation in the vertical direction significantly improves the regional simulation at all numbers of forcing field levels. The improvement is largest at very low vertical resolution. Incremental interpolation in time also works excellently, allowing the use of daily output for reasonably accurate downscaling. By using a combination of spectral nudging and incremental interpolation, it is possible to make a reasonably accurate downscaling from the forcing given daily at three–five levels in the vertical direction with low overhead. This considerably reduces the amount of data currently believed to be required to downscale global model integrations.


2011 ◽  
Vol 11 (9) ◽  
pp. 25371-25425 ◽  
Author(s):  
C. L. Heald ◽  
H. Coe ◽  
J. L. Jimenez ◽  
R. J. Weber ◽  
R. Bahreini ◽  
...  

Abstract. The global organic aerosol (OA) budget is highly uncertain and past studies suggest that models substantially underestimate observed concentrations. Few of these studies have examined the vertical distribution of OA. Furthermore, many model-measurement comparisons have been performed with different models for single field campaigns. We synthesize organic aerosol measurements from 17 aircraft campaigns from 2001–2009 and use these observations to consistently evaluate a GEOS-Chem model simulation. Remote, polluted and fire-influenced conditions are all represented in this extensive dataset. Mean observed OA concentrations range from 0.2–8.2 μg sm−3 and make up 15 to 70% of non-refractory aerosol. The standard GEOS-Chem simulation reproduces the observed vertical profile, although observations are underestimated in 13 of the 17 field campaigns (the median observed to simulated ratio ranges from 0.4 to 4.2), with the largest model bias in anthropogenic regions. However, the model is best able to capture the observed variability in these anthropogenically-influenced regions (R2=0.18–0.57), but has little skill in remote or fire-influenced regions. The model bias increases as a function of relative humidity for 11 of the campaigns, possibly indicative of missing aqueous phase SOA production. However, model simulations of aqueous phase SOA suggest a pronounced signature in the mid-troposphere (2–6 km) which is not supported in the observations examined here. Spracklen et al. (2011) suggest adding ~100 Tg yr−1 source of anthropogenically-controlled SOA to close the measurement-model gap, which we add as anthropogenic SOA. This eliminates the model underestimate near source, but leads to overestimates aloft in a few regions and in remote regions, suggesting either additional sinks of OA or higher volatility aerosol at colder temperatures. Sensitivity simulations indicate that fragmentation of organics upon either heterogeneous or gas-phase oxidation could be an important (missing) sink of OA in models, reducing the global SOA burden by 15% and 47% respectively. The best agreement with observations is obtained when the simulated anthropogenically-controlled SOA is increased to ~100 Tg yr−1 accompanied by either a gas-phase fragmentation process or an increase in volatility away from source (by decreasing the enthalpy of vaporization from 42 kJ mol−1 to 25 kJ mol−1). These results illustrate that models may require both additional sources and additional sinks to capture the observed concentrations of organic aerosol.


2006 ◽  
Vol 6 (6) ◽  
pp. 11727-11743 ◽  
Author(s):  
N. A. D. Richards ◽  
Q. Li ◽  
K. W. Bowman ◽  
J. R. Worden ◽  
S. S. Kulawik ◽  
...  

Abstract. We present results from the first assimilation of carbon monoxide (CO) observations from the Tropospheric Emission Spectrometer (TES) into a global three-dimensional (3-D) chemistry and transport model (CTM). A sequential sub-optimal Kalman filter assimilation scheme (Khattatov et al., 2000) was applied to assimilate TES CO profiles during November 2004 into the GEOS-Chem global 3-D CTM. The assimilation results were compared with MOPITT and MOZAIC observations. The assimilation significantly improves model simulation of CO in the middle to upper troposphere, where the MOPITT versus model bias was reduced by up to two-thirds. Assimilation results show higher levels of CO in the southern tropics, consistent with MOPITT observations. We find good agreement between the TES assimilated model estimates of CO and in situ measurements from the MOZAIC program, which shows a negative bias of up to 10 ppbv in middle and upper tropospheric TES CO. The results demonstrate how assimilation can be used for non-coincident validation of TES CO profile retrievals.


Sign in / Sign up

Export Citation Format

Share Document